Refine Your Search

Topic

Search Results

Standard

Aerospace – System Integration Factors That Affect Hydraulic Pump Life

2022-11-18
CURRENT
AIR1922B
This SAE Aerospace Information Report presents the following factors that affect hydraulic pump life and performance: a The need to supply hydraulic fluid at the correct pressure and quality to the pump inlet port b Considerations for the pump output c Factors to be considered for the pump case drain lines d The mounting of the hydraulic pump e Hydraulic fluid properties, including cleanliness
Standard

Aircraft Hydraulic Starter/Pumps

2013-10-28
CURRENT
AS838A
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
Standard

Aircraft Hydraulic Starter/Pumps

2005-04-26
HISTORICAL
AS838
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
Standard

Application Guide for Aerospace Hydraulic Motors

2021-11-09
CURRENT
ARP4940A
This SAE Aerospace Recommended Practice (ARP) is an application guide for fixed and variable displacement hydraulic motors. It provides details of the characteristics of fixed and variable displacement hydraulic motors, architectures, circuit designs, controls, and typical applications. The applications include airborne and defense vehicles with emphasis on high performance applications.
Standard

CIVIL TYPE AIRCRAFT VARIABLE DELIVERY HYDRAULIC PUMP

1992-07-01
HISTORICAL
AS595A
This specification establishes the common requirements and provides a guide for special requirements for variable delivery hydraulic pumps, suitable for use in civil aircraft. It also specifies the methods to be used for demonstrating compliance with these requirements.
Standard

Capability Guidelines for Computer Controlled Test Equipment for Hydraulic Components

2008-07-17
HISTORICAL
ARP4904
This SAE Aerospace Recommended Practice (ARP) establishes software capability guidelines for computer controlled test equipment, hereinafter referred to as automatic test equipment (ATE), for testing hydraulic components. A typical ATE system is shown in Figure 1. The items herein have been selected as potential features which may or may not be applicable to a particular application. This document does not address software development requirements, qualification procedures, or hardware design requirements, but encourages users to refer to existing documents, defined in 2.1.1, for guidance on such issues.
Standard

Capability Guidelines for Computer Controlled Test Equipment for Hydraulic Components

2014-04-24
CURRENT
ARP4904A
This SAE Aerospace Recommended Practice (ARP) establishes software capability guidelines for computer controlled test equipment, hereinafter referred to as automatic test equipment (ATE), for testing hydraulic components. A typical ATE system is shown in Figure 1. The items herein have been selected as potential features which may or may not be applicable to a particular application. This document does not address software development requirements, qualification procedures, or hardware design requirements, but encourages users to refer to existing documents, defined in 2.1.1, for guidance on such issues.
Standard

Compressor Units, Air/Gas, General Requirements For

2008-04-09
HISTORICAL
AS26805A
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Compressor Units, Air/Gas, General Requirements For

2001-03-01
HISTORICAL
AS26805
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Compressor Units, Air/Gas, General Requirements For

2013-06-13
CURRENT
AS26805B
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Current: Accumulator, Hydraulic, Welded Bellows, Factory Pre-Charged Change to: Recommended Design and Test Requirements for Factory Precharged, Bellows Separated, Hydraulic Accumulators

2024-03-20
WIP
ARP4378D
Current: This SAE Aerospace Recommended Practice (ARP) provides design and test requirements for high pressure, factory pre-charged, welded bellows hydraulic accumulators. Only proposed change to scope is to change "pre-charged" to "precharged" to align with ARP4386. "Precharge" is one word and non-hyphenated in ARP4386.
Standard

General Requirements for the Design and Testing of Civil Type Pressure Compensated, Variable Delivery Hydraulic Pumps

2022-11-02
CURRENT
AS595E
This SAE Aerospace Standard (AS) provides general design and test requirements for a flat cut-off pressure compensated, variable delivery hydraulic pump for use in a civil aircraft hydraulic system with a rated system pressure up to 5000 psi (34500 kPa). NOTE: Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard.
Standard

High Pressure Pneumatic Compressors Users Guide For Aerospace Applications

2007-11-07
HISTORICAL
AIR4994
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
Standard

High Pressure Pneumatic Compressors Users Guide For Aerospace Applications

2013-11-11
CURRENT
AIR4994A
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
Standard

Hydraulic Pump Minimum Inlet Pressure Test

2020-12-10
CURRENT
ARP6249
This SAE Aerospace Recommended Practice (ARP) contains technical information for conducting and evaluating the minimum inlet pressure capability of axial piston pumps.
Standard

Information Guide for Electric Motors which Drive Hydraulic Pumps

2016-04-25
WIP
AIR6855
This document provides an application guide for electric motors that drive aerospace hydraulic pumps. It provides details of the characteristics of electric motors powered by DC, Fixed Frequency AC, and Variable Frequency AC electrical systems. The applications include both military and commercial aircraft.
Standard

MISSILE HYDRAULIC PUMPS

1992-01-10
HISTORICAL
AIR560B
Missile pumps are categorized by a moderate testing life and a relatively short operational service life. Generally, the pumps are operated at higher speeds, temperatures, and pressures than those used in manned aircraft systems, yet reliability must be extremely high, since there rarely is a redundant system aboard the missile.
Standard

Missile Hydraulic Pumps

2007-07-10
CURRENT
AIR560C
Missile pumps are categorized by a moderate testing life and a relatively short operational service life. Generally, the pumps are operated at higher speeds, temperatures, and pressures than those used in manned aircraft systems, yet reliability must be extremely high, since there rarely is a redundant system aboard the missile. Due to the short but critical life and performance requirements, development, reliability and acceptance testing should be focussed on eliminating infant mortality failures.
Standard

Motors, Aircraft Hydraulic, Constant Displacement General Specification For

1999-04-01
HISTORICAL
AS7997
This Specification covers constant displacement hydraulic motors, generally remotely mounted, using hydraulic fluid under pressure as the energy transfer medium for driving various accessories. Hydraulic motors shall be suitable for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891 as applicable.
X